Activation of human endothelial cells from specific vascular beds induces the release of a FVIII storage pool.

نویسندگان

  • Tina Shahani
  • Renaud Lavend'homme
  • Aernout Luttun
  • Jean-Marie Saint-Remy
  • Kathelijne Peerlinck
  • Marc Jacquemin
چکیده

Although the liver is known to be the main site of factor VIII (FVIII) production, other organs are probably also important for the regulation of FVIII secretion. However, the study of the regulation of extrahepatic FVIII production has been hampered by the lack of definitive identification of human tissues able to secrete FVIII. Recent studies have shown that lung endothelial cells can synthesize FVIII. We therefore studied the production of FVIII by endothelial cells purified from other vascular beds. Because physiologic stress results in a rapid elevation of FVIII, we also investigated whether endothelial cells can store FVIII and secrete it after treatment with agonists. Microvascular endothelial cells from lung, heart, intestine, and skin as well as endothelial cells from pulmonary artery constitutively secreted FVIII and released it after treatment with phorbol-myristate acetate and epinephrine. By contrast, endothelial cells from the aorta, umbilical artery and umbilical vein did not constitutively secrete FVIII or release it after treatment with agonists, probably because of a lack of FVIII synthesis. Extrahepatic endothelial cells from certain vascular beds therefore appear to be an important FVIII production and storage site with the potential to regulate FVIII secretion in chronic and acute conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic induction of a releasable pool of factor VIII in human endothelial cells.

Although it is known that factor VIII (FVIII) plasma levels increase rapidly in response to a number of stimuli, the biological stimuli behind this release is less clear. Previously, we showed that FVIII can traffic together with von Willebrand factor (vWF) into storage granules in a pituitary tumor cell line, AtT-20; however, AtT-20 cells could not be used to address the release or functional ...

متن کامل

Endothelial cells synthesize FVIII Scientific section designation: THROMBOSIS AND HEMOSTASIS Title: Murine coagulation factor VIII is synthesized in endothelial cells

The primary cellular source of FVIII biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of FV and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10-15% of norm...

متن کامل

Murine coagulation factor VIII is synthesized in endothelial cells.

The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors r...

متن کامل

Human Trophoblast Progenitor Cells Express and Release Angiogenic Factors

Trophoblast stem cells develop from polar trophoectoderm and give rise to the cells that generate the placenta. Trophoblast cells are responsible for the uterinal invasion and vascular remodeling during the implantation of the embryo. However this knowledge is not yet to be confirmed for trophoblast progenitor cells (TPCs). In this study, we aimed to demonstrate that human TPCs (hTPCs) express ...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 115 23  شماره 

صفحات  -

تاریخ انتشار 2010